
Abstract – With the rapid development of mobile Internet, home broadband has been integrated into people’s daily lives,
and the market has become increasingly saturated. User experience and broadband quality have become the key factors de‑
termining market competitiveness, and consequently, most operators currently are increasing attention to network quality
issues and how to improve user experience. This paper proposes an ef icient machine learning model to accurately evalu‑
ate home user network experiences. The dataset used encompasses network indicator data from 500 anonymized users, and
presents a set of formidable challenges including a non‑standard sampling rate and time range, an uneven distribution of
observations, multiple recorded observations for identical timestamps, a constrained sample size, a subjective de inition of
Internet experience, and a lack of essential information regarding the data collection setup. Our novel time series character‑
istic‑based method extracts thousands of descriptive statistics from the time series sequences which reveal that, even in the
face of the dataset’s inherent complexities, our proposed method excels, achieving an impressive 67% validation accuracy.
This represents a substantial 3% enhancement over the performance of conventional models on this dataset. Furthermore,
we explore the potential of a Recurrent Neural Network (RNN) model, which also yields promising results with a validation
accuracy of 58%. It is important to underscore that the performance of the RNNmodel could be substantially enhanced with
a larger dataset. By leveraging these indings, network operators can gain valuable insights towards developing effective
machine learning models that proactively identify potential dissatis ied users. This capability will enable operators to imple‑
ment timely corrective measures, ultimately enhancing the overall user experience. As a result, this proactive approach can
signi icantly reduce customer churn, as users are more likely to remain loyal to a service provider that consistently offers a
high‑quality network experience.
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1. INTRODUCTION
The rapid development of mobile Internet has resulted
in widespread adoption of home broadband, leading to a
highly competitive market [1]‑[2]. In this environment,
the quality of broadband and user experience plays a crit‑
ical role in determining market competitiveness. Opera‑
tors who fail to provide a high quality service risk losing
customers to their competitors [3]. Consequently, opera‑
tors are now focused on identifying network issues, pre‑
dicting potential problems proactively, and promptly im‑
proving user experience. To achieve this, operators uti‑
lize a range of tools and techniques to monitor networks
for problems such as network congestion, signal interfer‑
ence, and service outages [4]. However, with the increas‑
ing complexity and scale of networks, manually detecting
and diagnosing all potential issues becomes impossible.
As a result, many operators are turning to advanced ana‑
lytics and machine learning algorithms to detect and pre‑
dict potential issues before they arise [5].

Machine Learning (ML), a sub ield of Arti icial Intelli‑
gence (AI), focuses on developing algorithms and statis‑
tical models that enable computer systems to learn and
improve from experience without being explicitly pro‑

grammed [6]. ML inds numerous applications across
various domains, including computer vision, natural lan‑
guage processing, speech recognition, signal processing,
and others [7]. It has emerged as a powerful tool for solv‑
ing complex problems, and its impact is expected to grow
with the development of more applications and availabil‑
ity of data.

One such application is home user network classi ica‑
tion, where ML can be used to classify a home broadband
user’s network experience based on factors like latency,
packet loss, and throughput [4]. By identifying patterns
and characteristics in these features, ML algorithms can
make informed assessments of a user’s online experience
in real time.

A Deep Packet Inspection (DPI) probe is a pivotal compo‑
nent in network segmentation, effectively dividing it into
uplink and downlink sides, as visually depicted in Fig. 1.
Notably, a signi icant proportion of network issues can
be traced back to the downlink network side. Therefore,
there’s an imperative need for proactive monitoring of
changes in downlink‑side indicators. Within the domain
of the downlink side, a comprehensive set of ifteen in‑
dicators is available for evaluating network performance.
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ZTE’s [8] analysis of real‑world user network data has
identi ied eight of these indicators as pivotal for gaining
insights into the quality of user experience. These eight
indicators form the cornerstone of our dataset.

Our dataset comprises DPI device readings for various
downlink‑side indicators, collected from 500 anonymous
individual users over a speci ic time period. Each user’s
experience is categorized as either a ”good experience”
(hereby referred to as ”UGE”) or a ”bad experience”
(hereby referred to as ”UBE”). This data collection initia‑
tive was proposed as part of the 2022 ITU AI/ML in 5G
Challenge, and it presents several unique challenges that
our solution aims to overcome.

One prominent challenge relates to the subjective na‑
ture of determining whether a user’s experience falls into
the ”good” or ”bad” category. For instance, consistent
packet loss [9] or high latency during video streaming or
web browsing might be deemed as negative, while high
throughput and low latency during online gaming [10]
could be seen as positive. This inherent ambiguity in la‑
beling UGE and UBE data points, lacking clear evaluation
criteria, adds complexity to the problem. In this study, we
will explorewhetherourmachine learningmodel canout‑
perform random sampling, even in the presence of this la‑
bel ambiguity, while also overcoming the other challenges
posed by the dataset.

In this paper, we conduct a comprehensive assessment of
existing MTSC methods using the dataset introduced by
ZTE, identifying their suboptimal performance due to the
dataset’s formidable challenges. Our study encompasses
a comparison between conventional MTSC models and
deep learning techniques, along with the introduction of
a novel time series characteristic‑based approach that in‑
volves extracting thousands of descriptive statistics from
time series sequences to serve as input features for tra‑
ditional classi ication models not explicitly designed for
MTSC tasks.

The investigation highlights the remarkable performance
of our proposed time series‑characteristic models when
applied to this unique dataset, achieving an impressive
accuracy of 67%. This represents a notable 3% improve‑
ment over the closest competitor. Additionally, the study
underscores the potential of deep learning models, no‑
tably Recurrent Neural Networks (RNNs), which exhibit
commendable accuracy, achieving 58% on this relatively
small dataset. Given a more extensive dataset, we can
leverage the full capabilities of these deep learning mod‑
els, andpotentially surpass theperformanceof traditional
statistical approaches.

The subsequent sections of this article delve deeper into
the application of machine learning algorithms to classify
home broadband user experiences. In Section 2, we con‑
duct a comprehensive literature review to highlight pre‑
vious research and indings concerning network perfor‑

mance and user experience. Section 3 provides an in‑
depth analysis of the dataset used in our study, along
with the challenges that render it a unique and demand‑
ing problem in the networking domain. Additionally, Sec‑
tion 4 outlines our data preprocessing pipeline. In Sec‑
tion 5, we present and elucidate the various models em‑
ployed in our study. Subsequently, Section 6 presents the
results of our experiments, including accuracy and per‑
formance metrics, and Section 7 contextualizes them by
providing a comparison to the existing state‑of‑the‑art on
this dataset. Lastly, in Section 8, we conclude the paper by
summarizing our indings and suggesting potential future
research directions.

Fig. 1 – Downlink network side

2. LITERATURE REVIEW

While machine learning approaches for classifying net‑ 
work traf ic and Quality of Experience (QoE) have been 
extensively studied, there is a notable research gap con‑ 
cerning the classi ication of network experience specif‑ 
ically for home broadband users. Additionally, the ZTE 
dataset, which we utilized for training our model, remains 
unexplored in the literature, and its challenges, particu‑ 
larly regarding ambiguous label de initions, have yet to be 
thoroughly investigated.

Network traf ic classi ication generally involves identify‑ 
ing the applications/protocols/services used in a moni‑ 
tored network [11]. Although this is a well‑researched 
topic with several new studies emerging yearly, it dif‑ 
fers from our speci ic objective of classifying the subjec‑ 
tive network experience for home users. For instance, 
Lim et al. proposed two deep learning methodologies for 
network traf ic classi ication: a multi‑layer Long Short‑ 
Term Memory (LSTM) model and a combination of Convo‑ 
lutional Neural Networks (CNNs) and single‑layer LSTM 
models [12]. The multi‑layer LSTM model achieved a high 
F1‑score in classifying network packets into eight dif‑ 
ferent application label names. Another comprehensive 
study by Azab et al. reviewed various network classi ica‑ 
tion techniques, including port‑based identi ication, deep 
packet inspection, statistical features combined with ma‑ 
chine learning, and deep learning algorithms, along with 
their implementations, advantages, and limitations [11].

In recent years, there has also been a growing interest in 
the classi ication of end users’ perceived QoE when 
using online media apps, such as video streaming 
services [13]. A survey by Huang et al. provided an 
overview of the state‑of‑the‑art data‑driven approaches 
for QoE evaluation [14].
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MTSC has been a thriving research area in machine 
learning and data mining, with numerous applications 
in domains such as healthcare [15], manufacturing [16], 
and image recognition [17]. Notably, Ruiz‑Ortiz et al. 
conducted a comprehensive comparative study evalu‑ 
ating different MTSC algorithms on 26 out of the 30 
University of East Anglia (UEA) [18] archive problems 
characterized by equal‑length data [19]. The ind‑ 
ings demonstrated that four classi iers outperformed 
the benchmark dynamic time warping algorithm signif‑ 
icantly. Among these, a recently proposed classi ier 
known as ROCKET exhibited remarkable improvements 
on the archive datasets, accomplishing the task in signi i‑ 
cantly less time compared to the other three classi iers.

With the existing scarcity of research on home user net‑ 
work experience classi ication and the speci ic dataset 
in question, the importance of this problem becomes in‑ 
creasingly evident. The growing dependence on home 
networks for various applications, such as online educa‑ 
tion and remote work, emphasizes the necessity for reli‑ 
able classi ication methods. To address this research gap, 
our paper aims to evaluate a variety of machine learning 
models utilizing real‑world DPI probe readings. Table 1 
compares the work mentioned in this section and high‑ 
lights the unique contribution of our paper to the ield.

3. DATASET
The dataset used in this study was provided by ZTE [8] 
as part of the 2022 ITU AI/ML In 5G Challenge [20]. The 
dataset includes indicator data recordings for 500 indi‑ 
vidual anonymous users, each labeled as either UGE or 
UBE. For model development, 80% of the dataset (400 
users) is used for training, while the remaining 20% (100 
users) is used for validation. Both sets maintain a bal‑ 
anced class distribution, with 50% UGE and 50% UBE 
records.

The speci ic indicators used in the dataset include the fol‑ 
lowing:

• Indicator 1: Time interval between the syn ack
packet and the ack packet in the irst step of the
three‑way handshake.

• Indicator 2: Time interval between the syn ack
packet and the ack packet in the second step of the
three‑way handshake.

• Indicator 3: Time interval between the ack packet
and the irst payload packet in the three‑way hand‑
shake.

• Indicator 4: Response delay of the irst packet with
payload after the establishment of TCP for multiple
lows in the session.

• Indicator 5: Actual delay of transmission from the
DPI position to the user terminal in TCP transmis‑
sion.

• Indicator 6: Transmission delay from the DPI posi‑
tion to the website in TCP transmission.

• Indicator 7: Percentage of downlink retransmitted
packets in the current session in TCP transmission.

• Indicator 8: Percentage of upstream retransmission
packets of the current session in TCP transmission.

Fig. 2 – UBE indicators sample

Fig. 3 – UGE indicators sample
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Table 1 – Existing literature comparison

Study Research Focus Key Contribution

Lim et al. (2019) Classifying network traf ic from eight source
applications using deep learning models
with a custom preprocessing pipeline.

Highlights the effectiveness of deep learning models when
applied to network traf ic classi ication. The study
showcases the bene its of employing a tailored

preprocessing pipeline, leading to improved accuracy in
identifying the source applications of network traf ic.

Azab et al. (2022) Comprehensive survey of network traf ic
classi ication techniques on eight unique
datasets towards the identi ication of the
used applications/protocols/services in a

monitored network.

Surveys existing methods for network traf ic classi ication,
including port‑based identi ication, deep packet inspection,

statistical features with machine learning, and deep
learning algorithms.

Ahmad et al. (2021) QoE prediction for video streaming services
using supervised learning ML models and
their deployment in 5G/6G networks with

SDN, NFV, and MEC.

Provides a tutorial on developing and deploying QoE
prediction models for video streaming, introduces a
reference architecture for ML model deployment in

next‑gen networks, and conducts a comparative study of
supervised learning ML models for QoE prediction in video

streaming applications.
Huang et al. (2018) Survey of data‑driven approaches for QoE

evaluation, exploration of machine learning
algorithms for QoE modeling and prediction,

and research on QoE evaluation in
imbalanced datasets.

Provides a comprehensive survey of data‑driven methods
for QoE evaluation, discusses the pros and cons of existing

machine learning algorithms for QoE modeling, and
addresses the challenges of QoE evaluation in imbalanced

datasets.
Hammerla et al. (2016) Human Activity Recognition using deep

learning approaches on wearable sensor
data, with focus on recurrent models and a

novel regularization method.

Rigorously explores deep, convolutional, and recurrent
approaches for HAR, introduces a new regularization
technique, and demonstrates superior performance

compared to the state‑of‑the‑art on a benchmark dataset.
Provides insights into model suitability for different HAR
tasks and guidelines for applying deep learning in HAR

settings.
Shojaee et al. (2021) Modeling MTS data in smart manufacturing

using deep neural networks and proposing
the adaptive top‑N linear

generative‑discriminative (AT‑LinGD)
method for ef icient pipeline selection.

Investigates the use of DNN pipelines for MTS classi ication
in smart manufacturing, introduces the AT‑LinGD method
for learning‑to‑rank top‑N pipelines, and demonstrates its
ef iciency and accuracy in a real case study of aerosol jet

printing process.
Zhao et al. (2021) MTSC using image classi ication neural

networks and transfer learning from
ImageNet.

Proposes an MTSC method based on transforming time
series into gray images and applying image classi ication

neural networks. Explores two image classi ication
networks on different imaging methods and assesses

transfer learning performance. Shows competitive results
in MTSC and demonstrates a 2.54% improvement in overall
average accuracy with ResNet18 using ixed‑sized images.

Ruiz et al. (2021) Comparison of MTSC algorithms based on
deep learning, shapelets, and bag of words

approaches.

Reviews recently proposed MTSC algorithms, introduces
ensembling for adapting univariate classi iers to MTSC, and

demonstrates the superiority of certain classi iers,
particularly ROCKET, on MTSC archive problems with

signi icant improvements in computation time.
Bagnall et al. (2021) Development of the irst iteration of the

MTSC archive for MTSC problems,
containing 30 datasets with consistent

length and train/test splits.

Addresses the lack of MTSC evaluation resources,
collaboratively creates the MTSC archive, and facilitates
standardized evaluations for MTSC algorithms with a

diverse set of datasets.
This work Classi ication of home user network

experience using traditional MTSC, deep
learning, and TS‑Char models on the novel

ZTE dataset.

Addresses the previously unexplored challenge of
classifying home user network experience. Demonstrates
the effectiveness of diverse machine learning models and
introduces a novel TS‑Char approach tailored to the ZTE

dataset, contributing to the advancement of research in this
domain.
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• Non‑standard sampling rate and time range: The
records in the dataset have a non‑standard sampling
rate and time range, making them challenging to an‑
alyze effectively.

• Uneven distribution of observations: The dataset ex‑
hibits an uneven distribution of observations across
records, ranging from the largest containing 43,828
observations to the smallest with only 566 observa‑
tions. This disparity makes the dataset incompatible
with most state‑of‑the‑art MTSC algorithms.

• Multiple observations for a single timestamp: Some
records in the dataset contain multiple observations
for a single timestamp. This situation could lead to
inaccuracies in the analysis if not appropriately han‑
dled during data preprocessing.

• Limited sample size: The dataset has a relatively
small sample size, consisting of only 500 unique
users for training and validation. This limited size
may impact the generalizability of results and model
performance.

• Subjective de inition of Internet experience: De in‑
ing a good or bad Internet experience is subjective,
and user‑reported labels may contain outliers. As
a result, similar distributions of UGE and UBE indi‑
cators may arise, as depicted in 4. This subjectivity
poses challenges for statistical models to accurately
differentiate between UGE and UBE instances.

• Lack of data collection set‑up information: The
absence of information about the data collection
setup/apparatus used prevents us from utilizing ad‑
ditional input/metadata to enhance the models.

In addition to the challenges posed by the dataset, it’s
important to note that this research was conducted as
part of a competition framework. The rules of the com‑
petition explicitly prohibited any alterations to the pro‑
vided dataset. This restriction was a critical factor in our
research approach, in luencing the methodologies em‑
ployed and the nature of the challengeswe faced. Underst
anding these constraints is essential for a comprehensive
evaluation of the study’s methodology and outcomes. De‑
spite these challenges, the dataset presents a valuable op‑
portunity to developmodels that can enhance our under‑
standing of the factors that contribute to a good or bad
Internet experience.

To preserve the integrity of the problem statement, out‑
liers are not removed from the UGE data in all subsequent
experiments. This rule is based on the fact that, in prac‑
tical use, the indicators of users with good experiences
are not completely free of outliers, and manual removal
of outliers from UGE data would introduce bias.

Fig. 4 – UGE/UBE indicator distributions

4. DATA PREPROCESSING PIPELINE
Prior to introducing the proposed methods, it is impor‑ 
tant to outline the standard data preprocessing pipeline 
that is employed. This pipeline includes several essential 
steps to address the issues with the data, such as linear 
interpolation, Z‑normalization, and low‑noise padding. 
These preprocessing steps enhance the effectiveness of 
the models by enabling them to better utilize the informa‑ 
tion present in the data, thereby improving classi ication 
accuracy.

4.1 Linear interpolation
Linear interpolation is a powerful regularization tech‑ 
nique for time series data, as it resamples the data to a 
ixed interval [21]. This technique is particularly useful 
when dealing with dense time series or unevenly spaced 
sampling rates [22]. By resampling the data to stan‑ 
dard intervals, such as 5‑minute intervals, the resulting 
time series becomes more manageable and easier to work 
with. An example of linear interpolation is shown in Fig. 5,

The dataset comes with several issues that need to be 
addressed.
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where a time series is resampled to 15‑minute intervals.
In the igure, the original data points are represented by
gray marks, while the resampled points are depicted in
orange.

Fig. 5 – Illustration of linear interpolation process, source: [23]

4.2 Z‑normalization
Z‑normalization is a widely‑used technique that trans‑
forms input vectors so that their mean is approximately
zero and their standard deviation is close to one [24]. It is
a powerful preprocessing step, particularly when analyz‑
ing the structural patterns of time series data. By normal‑
izing the data in this way, a model can focus on similar‑
ities and dissimilarities in the shape and structure of the
data, rather than being in luenced bydifferences in ampli‑
tude [25]. In our speci ic problem, indicator columnshave
different units and scales, making z‑normalization neces‑
sary to ensure accurate and meaningful comparisons be‑
tween them. The formula for z‑normalization is shown in
Equation (1), where 𝑥 is the input vector, 𝜇 is its mean,
and 𝜎 is its standard deviation.

𝑍 = 𝑥 − 𝜇
𝜎 (1)

Fig. 6 – Time series before and after Z‑normalization

4.3 Low‑noise padding
Low‑noise padding is a useful technique for handling
unevenly‑sized time series data. This method involves
adding low‑amplitude noise to the end of shorter time
series, which results in sequences that are as long as
the longest time series. Speci ically, we added padding
with an amplitude of 1e‑6 to address the issue of uneven‑
length time series in the data.

Compared to other techniques such as uniform scaling,
truncation, and ARIMA‑based future value forecasting,
low‑noise padding is the easiest to implement and pro‑
vides the best performance for our problem [26]. The

main limitation of low‑noise padding is that it may not be
effective when the time series lengths differ signi icantly
[27]. However, this issue has already been addressed by
the use of linear interpolation, which makes this an ideal
next step in the pipeline.

While some classi iers can directly process time series of
varying lengths, they tend to underperform when com‑
pared to alternative approaches [19]. Research suggests
that nearly any preprocessing strategy is better than none
for time series with different ixed sampling frequencies
[27], which is the case for our dataset. Therefore, we in‑
cluded low‑noise padding in our preprocessing pipeline
to ensure that all time series have uniform lengths, which
can improve the performance of the classi iers.

Fig. 7 – Time series before and after low‑noise padding

5. TESTEDMETHODS
In this section, we test several models for this task, and
categorize them into three groups: traditional MTSC
models, deep learning‑based MTSC models, and Time Se‑
ries Characteristic (TS‑Char) models. The sktime library
[28] was used in our experimentation process, since the
library implements most of the algorithms used for per‑
formance comparison in this work.

In this context, it is pertinent to note that extensive hyper‑
parameter optimization attempts, including grid search
techniques, did not yield signi icant enhancements over
the default parameter con igurations for the majority of
the models implemented. This phenomenon appears to
be attributable to the limited signal‑to‑noise ratio inher‑
ent in the dataset, a factor elaborately discussed in the
dataset section of this paper.

5.1 Traditional MTSC models
Traditional MTSC models refer to machine learning mod‑
els designed to classifymultivariate time series signals di‑
rectly. The methods tested in this category are ROCKET,
DTW‑KNN, and HIVE‑COTE, which are all considered
state‑of‑the‑art in the ield of MTSC.

5.1.1 ROCKET
The ”Random Convolutional Kernel Transform”
(ROCKET) model was introduced in [29] as a com‑
putationally ef icient and highly accurate method for
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time series classi ication. The ROCKET model is based 
on the idea of generating random convolutional kernels 
and applying them to a time series to extract relevant 
features.

ROCKET has been shown to outperform many traditional 
models on a wide range of time series classi ication tasks 
[19]. Furthermore, the model is computationally ef icient 
due to its use of random kernels and can handle variable 
length time series data without the need for padding or 
truncation. Thus, we chose to use a ROCKET model with 
10 000 kernels as the baseline for our traditional MTSC 
models to establish a strong performance benchmark for 
other methods.

5.1.2 DTW‑KNN
Another popular technique for time series classi ication is 
the ”Dynamic Time Warping k‑Nearest Neighbors” (DTW‑ 
KNN) algorithm, which has been widely used in the ield 
of pattern recognition and machine learning. The DTW‑ 
KNN algorithm is based on the Dynamic Time Warp‑ 
ing (DTW) distance measure, introduced in [30], which 
allows for the comparison of time series with varying 
lengths and time shifts. The DTW‑KNN algorithm works 
by irst computing the DTW distance between a query 
time series and all training time series, and then classi‑ 
fying the query time series based on the class labels of its 
k nearest neighbors in the training data.

DTW‑KNN has shown promising results on a variety of 
time series classi ication benchmarks and is known for 
its robustness to noise and variability in the data [19]. 
Therefore, we have included a DTW‑KNN with a brute 
force search method and n_neighbors set to 1 in our ex‑ 
periments to compare its performance with other pro‑ 
posed methods.

5.1.3 HIVE‑COTE

HIVE‑COTE (Hierarchical Vote Collective of 
Transformation‑based Ensembles) is a state‑of‑the‑ 
art ensemble method for time series classi ication 
that has achieved outstanding results in a range of 
benchmark datasets [19]. HIVE‑COTE leverages a hier‑ 
archical ensemble structure that is based on a range of 
transformation‑based feature extraction methods and a 
collection of classi iers, including elastic ensemble, rota‑ 
tion forest, and random forest. This ensemble method 
(V2.0) was introduced in [31] as an extension of the 
Collective of Transformation‑Based Ensembles (COTE) 
algorithm, which showed signi icant improvements over 
individual classi iers in terms of accuracy and speed. 
HIVE‑COTE further enhances the effectiveness of COTE 
by introducing a hierarchical structure that involves 
multiple levels of feature extraction and classi ication, 
which improves the robustness of the method to noise 
and variations in the data.

The model has been shown to achieve remarkable per‑ 
formance on a variety of time series classi ication bench‑ 
marks, including those with multivariate data. Moreover, 
HIVE‑COTE is designed to be robust to noise and variabil‑ 
ity in the data, making it suitable for real‑world applica‑ 
tions, and thus we chose to use the HIVE‑COTE model as 
one of the traditional MTSC benchmarks in our experi‑ 
ments.

5.2 Deep learning models
Deep learning models are a promising approach for auto‑ 
matically learning features from time series data, which 
could be especially useful for our dataset. In addition to 
potential outliers and frequency components, there may 
be complex patterns and relationships that are not read‑ 
ily apparent to humans or traditional statistical meth‑ 
ods. To explore this potential, we tested two popular 
types of deep learning models for MTSC: Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs). CNNs are well‑suited for capturing local patterns 
in time series data, while RNNs are particularly effective 
at modeling sequential data and capturing long‑term de‑ 
pendencies. Both types of models have shown impressive 
results in previous studies, making them promising can‑ 
didates for our task. Simpler models like Fully Connected 
Networks (FCNs) don’t naturally process sequences ef‑ 
fectively, which limits their suitability for our time series 
data. Therefore, we did not include them in our study.

5.2.1 Convolutional neural networks

CNNs, originally developed for image recognition, have 
gained popularity in time series classi ication due to their 
ability to extract and learn hierarchical features from se‑ 
quential data [32]. Unlike traditional feedforward neu‑ 
ral networks that treat input data as a ixed‑length vec‑ 
tor, CNNs can handle variable‑length sequences by slid‑ 
ing a ilter over the input sequence and performing con‑ 
volution operations to produce a feature map. The ilters 
can capture local patterns in the input sequence, such as 
spikes, trends, and seasonality, and the pooling layers can 
aggregate and downsample the features to capture the 
most important information [33].

CNNs have shown promising results in various applica‑ 
tions, and have even outperformed other traditional time 
series classi ication algorithms in some cases. For exam‑ 
ple, [34] found that CNNs achieve state‑of‑the‑art perfor‑ 
mance in time series classi ication on a real‑world dataset 
for human activity recognition. In this study, we used a 
CNN to classify the multivariate time series in our dataset. 
The hyperparameters used for training the CNN are out‑ 
lined in Table 2.
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Table 2 – CNN hyperparameters

Hyperparameter Value

Convolutional Layers 2
Filter Size 6, 12
Kernel Size 7

Stride 1
Activation Function Sigmoid

Pooling Layers 2
Pooling Type Average Pooling
Pooling Size 3
Learning Rate 0.01
Batch Size 16

Loss Mean Squared Error
Optimizer Adam
Epochs 2000

5.2.2 Recurrent neural networks
RNNs have become a popular approach for time series
classi ication due to their ability to model sequential data
and capture temporal dependencies over extended peri‑
ods [35]. This enables RNNs to learn intricate patterns
in time series data and make accurate predictions on
variable‑length sequences.

In this study, we used a speci ic type of RNN, the Long
Short‑Term Memory (LSTM) network [36]. LSTMs have
proven effective in addressing the vanishing gradient
problem that plagues standard RNNs, by utilizing a mem‑
ory cell and three gates: forget, input, and output. These
components selectively update and store information in
the memory cell, allowing LSTMs to retain information
about past inputs and make more accurate predictions
about future inputs [36]. The hyperparameters used for
training the LSTMmodel are outlined in Table 3.

Table 3 – LTSM hyperparameters

Hyperparameter Value

LSTM Layers 3
Dropout Layers 2

Layer Size 256
Dropout Rate 0.75
Learning Rate 0.001
Batch Size 10

Loss Cross Entropy Loss
Optimizer Adam
Epochs 136

Similar to our experience with XGBoost models, we found 
that hyperparameter optimization, learning rate adjust‑ 
ments, and changes in architectures had minimal impact 
on accuracy. Consequently, we chose to adopt standard 
values prevalent in widely‑used implementations.
The training of the model was completed in approx‑ 
imately one hour utilizing a single RTX 3080 GPU to 
achieve the best checkpoint. Beyond this point, the model 
exhibited tendencies of over itting, a phenomenon that
we have elaborated upon in the results section of the paper.

5.3 Time series characteristic models
Time Series Characteristic (TS‑Char) models rely on ex‑ 
tracting descriptive statistics from time series data and 
using them as input features for traditional machine 
learning models not speci ically designed for MTSC. The 
advantages to this approach lie in its robustness, since it 
is applicable to time series of any length or sampling fre‑ 
quency, with minimal preprocessing and low computa‑ 
tional overhead. The TS‑Char approach does not require 
the use of the data preprocessing pipeline, and thus it was 
not used when testing these models. However, the TS‑ 
Char approach may not capture the full complexity and 
dynamics of the underlying time series data, and may not 
perform as well as models designed speci ically for MTSC 
tasks in certain contexts.

To evaluate the performance of the TS‑Char approach, two 
methods were tested. The irst method involved manual 
feature extraction, where a manually de ined set of fea‑ 
tures was derived for each sequence. The second method 
used the library TSFresh [37] to automatically extract 
thousands of features from the data, providing new in‑ 
sights into the time series and their dynamics.

We used XGBoost with default hyperparameters [38] as 
the classi ier for both manual feature extraction and TS‑ 
Fresh approaches. XGBoost is known for its robustness 
and ability to achieve good accuracy on most classi ication 
problems [39]. However, since we are extracting a large 
number of features for each sequence, we run into the 
Big‑p, Little‑n (p»n) problem, where the number of features 
is much greater than the number of observations. This 
violates the default assumptions of most machine learn‑ 
ing algorithms and can lead to over itting and poor gen‑ 
eralization performance [40]. To address this issue, we 
applied a min‑max normalization to scale the features to 
a common range and reduce the effect of outliers. This 
technique is based on the formula shown in Equation (2), 
where 𝑋 is the original data point, 𝑋𝑚𝑖𝑛 is the minimum 
value in the dataset, 𝑋𝑚𝑎𝑥 is the maximum value in the 
dataset, and 𝑋𝑛𝑜𝑟𝑚 is the normalized value between 0 
and 1.

𝑋𝑛𝑜𝑟𝑚 = 𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(2)

We then applied Principal Component Analysis (PCA)
for dimensionality reduction. PCA transforms the origi‑
nal features into a smaller set of uncorrelated variables,
called principal components, that capture the most im‑
portant information in the data [41]. The number of prin‑
cipal components retainedwas determined by setting the
n_components parameter of PCA to 0.95, which keeps
enough components to explain 95% of the variance in the
data.
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5.3.1 Manual feature extraction

For the manual feature extraction approach, the following 
statistics were extracted for each sequence:

• Mean: the arithmetic mean of the sequence

• Median: the median value of the sequence

• Standard deviation: a measure of the dispersion of
the sequence values around the mean

• Quartiles: the values that divide the sequence into
four equal parts (25th, 50th, and 75th quartiles)

• Maximum: the highest value in the sequence

• Skew: ameasure of the symmetry of the distribution
of values in the sequence

• Kurtosis: a measure of the ”peakedness” of the dis‑
tribution of values in the sequence

• Fourier coef icients: the top 10 Fourier coef icients
of the sequence, which provide information about its
frequency content

• Outlier percentage: the percentage of values in the
sequence that are identi ied as outliers using the lo‑
cal outlier factor algorithm with a number of neigh‑
bors set to 5, and the Median Absolute Deviation
(MAD) method

These statistics provide a summary of the time series se‑
quence and can be used to represent its salient features
for classi ication purposes.

5.3.2 TSFresh
For the TSFresh approach, we used an automatic fea‑
ture extraction method provided by the TSFresh library.
The speci ic set of features used in this study was ”Ef i‑
cientFCParameters,”which includes all features except for
those marked with the ”high_comp_cost” attribute. This
attribute indicates features that are computationally ex‑
pensive to calculate and may not be suitable for real‑time
applications. By using the Ef icientFCParameters set, we
were able to extract 6246 features without incurring a
high computational cost. The full list of features included
in this set can be found in [42].

6. RESULTS
This section presents the results of our experiments with
the proposed methods on the provided dataset. We eval‑
uate the performance of each algorithm using accuracy,
precision, and recall metrics, which provide insights into
their strengths and weaknesses. Accuracy measures the
overall proportion of correct predictions, precision mea‑
sures the proportion of true positives among all positive

Fig. 8 – TSFresh feature extraction from signals, source: [42]

predictions, and recall measures the proportion of true
positives among all actual positive cases. The analysis fo‑
cuses on the validation set, which provides an unbiased
assessment of the models’ generalization performance.

Table 4 summarizes the validation set performance of all
the models that were evaluated.

Table 4 – Model metrics (validation set)

Model Accuracy Precision Recall
ROCKET 0.40 0.43 0.30
DTW‑KNN 0.37 0.29 0.20
HIVE‑COTE 0.44 0.38 0.28

CNN 0.50 0.25 0.50
LSTM 0.58 0.73 0.58
Manual

+ XGBoost 0.46 0.46 0.46
TSFresh
+ XGBoost 0.67 0.67 0.68

The results show that the TSFresh + XGBoost model 
achieved the highest performance across all three met‑ 
rics, with an accuracy of 0.67, precision of 0.67, and re‑ 
call of 0.68. The LSTM model also achieved good per‑ 
formance, with an accuracy of 0.58, precision of 0.73, 
and recall of 0.58. These results suggest that these mod‑ 
els are promising for accurately classifying the user type. 
The ROCKET, HIVE‑COTE, and Manual + XGBoost models 
achieved moderate performance, with accuracies ranging 
from 0.40 to 0.46. The precision and recall scores were 
also moderate, with values ranging from 0.29 to 0.46. The 
DTW‑KNN and CNN models achieved the lowest perfor‑ 
mance, with accuracies of 0.37 and 0.50, respectively, and 
low precision and recall scores. These results suggest that 
these models cannot deal with the challenges presented 
by this dataset.
Overall, our results provide practical guidance for select‑ 
ing appropriate models for time series data, and demon‑ 
strate the potential of advanced feature extraction tech‑ 
niques for improving performance in this context. The TS‑ 
Fresh + XGBoost and LSTM models are promising options 
for accurately predicting the target variable, but further 
research is needed to explore their limitations and further
applications.
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Fig. 9 – Model metrics (validation set)

Below we present a more in‑depth analysis of the models 
we evaluated.

6.1 MTSC result analysis
ROCKET stands out as the top‑rated and swiftest classi‑ 
ier, earning its place as the go‑to choice for MTSC prob‑ 
lems, as advocated by [19]. Consequently, we employed 
the sktime implementation [28] as a benchmark for MTSC 
models. Regrettably, this model exhibited a rather mea‑ 
ger accuracy of 40% on the validation set.

One plausible explanation for this subpar performance 
lies in the presence of UGE outliers, which tend to blur 
the statistical distributions of UGE and UBE, making them 
notably similar. This hypothesis gains further credibility 
as similar lackluster outcomes were observed when ex‑ 
perimenting with other MTSC models like DTW‑KNN and 
HIVE‑COTE.

Collectively, these indings underscore the unsuitability 
of traditional MTSC approaches for modeling this dataset. 
As such, we do not recommend relying on these methods 
to tackle the challenge at hand.

6.2 LSTM result analysis
The best LSTM checkpoint attains an impressive valida‑ 
tion accuracy of 58%, marking a signi icant leap forward 
compared to traditional MTSC models. This substantial 
improvement can be attributed to the capacity of deep 
neural networks to capture a broader spectrum of un‑ 
derlying features compared to conventional statistical ap‑ 
proaches.

Interestingly, a discernible pattern is observed in the 
model performance in which the training accuracy and

loss stabilize at 4000 epochs whilst the validation loss
starts to climb rapidly. This behavior suggests that the
model has reached a saturation point, where it strug‑
gles to identify additional predictive features and conse‑
quently succumbs to over itting.

This observation serves as a reminder of the limitations
posed by the relatively small number of unique user sam‑
ples in this dataset. Given access to a more extensive
dataset, there’s good reason to believe that this model
could achieve substantially higher levels of accuracy.

6.3 TS‑Char result analysis
The Manual feature extraction + XGBoost model demon‑
strates a 10‑fold cross‑validation accuracy of 0.51, accom‑
panied by a test accuracy (on the manually selected vali‑
dation set) of 0.46. This performance is likely impacted
by the presence of UGE outliers, a challenge discussed in
detail in the MTSC result analysis section. The manually
extracted features struggle to provide distinct character‑
istics for themodel to differentiate between these outliers
and other data points.

In contrast, the TSFresh + XGBoost model seems to over‑
come these hurdles adeptly. It accomplishes this by ex‑
tracting thousands of features, resulting in a validation
accuracy of 67%, irmly establishing itself as the leading
model in our experiments.

For a more nuanced understanding, we have provided
class‑wise metrics in Table 5 and a confusion matrix in
Fig. 10, highlighting the model’s consistent and reliable
performance across both labels. This success is attributed
to the extraction of descriptive features, offering deeper
insights into the underlying data patterns and the vari‑
ables that in luence positive or negative experiences.

Unfortunately, the use of PCA has hindered our ability to
pinpoint speci ic features as the most in luential predic‑
tors. In forthcoming research, it may be worthwhile to
explore alternative dimensionality reduction techniques
that enable the extraction of feature importance, granting
us a more detailed comprehension of the critical predic‑
tive elements at play.

Table 5 – TSFresh + XGBoost model detailed metrics

Label Precision Recall F1 Score Samples
UGE 0.67 0.68 0.67 50
UBE 0.67 0.66 0.67 50

7. BENCHMARKS
To facilitate a comprehensive comparison, we have inte‑
grated the indings of the leading teams in the 2022 ITU
AI/ML 5G Challenge, and their respective results are pre‑
sented in Table 5. This comparative analysis serves to
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Fig. 10 – TSFresh + XGBoost model confusion matrix

contextualize our own indings and provides valuable in‑
sights into the current state‑of‑the‑art in this domain.
Fig 11 presents the best models from the challenge, in‑
cluding our team’s solution. ”RF” denotes random forest
and ”LR” denotes logistic regression.

Fig. 11 – 2022 ITU AI/ML 5G Challenge best models

Our approach utilized the TSFresh feature extraction in
combinationwith the XGBoost classi ier, achieving a com‑
mendable accuracy of 67%. Upon examining the results,
it becomes evident that our team’s approach has out‑
performed the solutions proposed by other participating
teams. This performance underscores the effectiveness of
our chosenmethodology in tackling the challenges posed
by the ZTE dataset.

8. CONCLUSION
Our study sheds light on the effectiveness of various ma‑
chine learning models for the task of classifying home
network user data. The experiments demonstrate that
the proposed TSFresh feature extractionmethod, coupled
with an XGBoost classi ier, achieves the highest accuracy
on the dataset. While this model demonstrated the best
performance, it is pertinent to note that the use of PCA in
this context imposes limitations on the interpretability of
themodel, particularly with respect to conventional tech‑
niques like SHAP. This aspect highlights a valuable avenue
for future research: developingmethodologies that retain
the predictive accuracy achieved by our approach while
enhancing model transparency and interpretability, pos‑
sibly through the avoidance of PCA or the integration of
more explainablemachine learning techniques. Addition‑

ally, the combination of a data preprocessing pipeline and
an LSTM model shows promising results, with potential
for improved generalization on larger datasets. However,
it is worth noting that no single ”best” model exists, as the
choice of algorithm depends on the speci ic characteris‑
tics of the dataset. Our indings underscore the potential
of machine learning in solving real‑world problems and
provide a solid foundation for future research in this area.
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